Page Card
Belongs to subject agentic ai
RAG Tool The RagTool is a dynamic knowledge base tool for answering questions using Retrieval-Augmented Generation.
β RagTool β Description The RagTool is designed to answer questions by leveraging the power of Retrieval-Augmented Generation (RAG) through EmbedChain. It provides a dynamic knowledge base that can be queried to retrieve relevant information from various data sources. This tool is particularly useful for applications that require access to a vast array of information and need to provide contextually relevant answers.
β Example The following example demonstrates how to initialize the tool and use it with different data sources:
Code
Copy from crewai_tools import RagTool
rag_tool = RagTool()
rag_tool.add(data_type="file", path="path/to/your/document.pdf")
rag_tool.add(data_type="web_page", url="https://example.com")
@agent def knowledge_expert(self) -> Agent: ''' This agent uses the RagTool to answer questions about the knowledge base. ''' return Agent( config=self.agents_config"knowledge_expert", allow_delegation=False, tools=rag_tool ) β Supported Data Sources The RagTool can be used with a wide variety of data sources, including:
π° PDF files π CSV files π JSON files π Text π Directories/Folders π HTML Web pages π½οΈ YouTube Channels πΊ YouTube Videos π Documentation websites π MDX files π DOCX files π§Ύ XML files π¬ Gmail π GitHub repositories π PostgreSQL databases π¬ MySQL databases π€ Slack conversations π¬ Discord messages π¨οΈ Discourse forums π Substack newsletters π Beehiiv content πΎ Dropbox files πΌοΈ Images βοΈ Custom data sources β Parameters The RagTool accepts the following parameters:
summarize: Optional. Whether to summarize the retrieved content. Default is False. adapter: Optional. A custom adapter for the knowledge base. If not provided, an EmbedchainAdapter will be used. config: Optional. Configuration for the underlying EmbedChain App. β Adding Content You can add content to the knowledge base using the add method:
Code
Copy
rag_tool.add(data_type="file", path="path/to/your/document.pdf")
rag_tool.add(data_type="web_page", url="https://example.com")
rag_tool.add(data_type="youtube_video", url="https://www.youtube.com/watch?v=VIDEO_ID")
rag_tool.add(data_type="directory", path="path/to/your/directory") β Agent Integration Example Hereβs how to integrate the RagTool with a CrewAI agent:
Code
Copy from crewai import Agent from crewai.project import agent from crewai_tools import RagTool
rag_tool = RagTool() rag_tool.add(data_type="web_page", url="https://docs.crewai.com") rag_tool.add(data_type="file", path="company_data.pdf")
@agent def knowledge_expert(self) -> Agent: return Agent( config=self.agents_config"knowledge_expert", allow_delegation=False, tools=rag_tool ) β Advanced Configuration You can customize the behavior of the RagTool by providing a configuration dictionary:
Code
Copy from crewai_tools import RagTool
config = { "app": { "name": "custom_app", }, "llm": { "provider": "openai", "config": { "model": "gpt-4", } }, "embedding_model": { "provider": "openai", "config": { "model": "text-embedding-ada-002" } } }
rag_tool = RagTool(config=config, summarize=True) β Conclusion The RagTool provides a powerful way to create and query knowledge bases from various data sources. By leveraging Retrieval-Augmented Generation, it enables agents to access and retrieve relevant information efficiently, enhancing their ability to provide accurate and contextually appropriate responses.